技術データ 2.均平度の経年変化

反転均平工法と従来工法を実施した北空知管内のほ場において、ほ場の高低差を測定し、施工後の均平度の経年変化について整理した(表-4)。

調査を実施した各ほ場とも、十分な均平精度が確保されています。このように、施工後1年以上が経過し、大豆や水稲が作付されているなかで均平度は維持され、工法による差はなかった。

表-4 代表ほ場における均平度調査結果

《新十津川町・北花月地区の例》

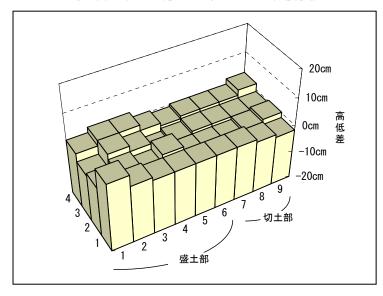
		調査項目	標準偏差(mm)		均平精度(mm)		ほ場内の高低差(cm)	
調査	時期		反転工法	ブルエ法	反転工法	ブルエ法	反転工法	ブルエ法
2 1	年目	耕起前	23	22	23	22	11	10
2 1	年目	水稲収穫後	13	13	13	14	6	6
3 1	年目	水稲収穫後	11	14	11	14	4	7

《深川市・北水源地区の例》

調査	查項目 標準M	標準偏差(mm)		均平精度(mm)		ほ場内の高低差(cm)	
調査時期	反転工法	ま ブルエ法	反転工法	ブルエ法	反転工法	ブルエ法	
2年目 水稲収	双穫後 13	15	13	15	7	7	
3年目 水稲坝	双穫後 9	14	9	14	5	7	

《深川市・多度志地区の例》

調査項目	標準偏差(mm)		均平精度(mm)		ほ場内の高低差(cm)	
調査時期	反転工法	ブルエ法	反転工法	ブルエ法	反転工法	ブルエ法
1年目 大豆収穫後	17	28	17	28	11	14
2年目 水稲収穫後	19	20	20	19	9	10


表-5 均平精度指標值

区分	標準偏差	均平精度					
施工管理基準 (道営ほ場整備)	100 ㎜以内	±50 mm以内が 80%	39 ㎜以下				
湛水直播栽培※1	15 ㎜以内	±25 ㎜以内が 90%	15 ㎜以下				
乾田直播栽培※1	20 ㎜以内	±25 mm以内が 80%	20 ㎜以下				
移植栽培**1	18 ㎜以内	±25 mm以内が 85%	17 mm以下				
参考) 直播栽培 ^{※2}	12 mm (最大高低差 Δha≒6 cm)	±25 mm以内が 96%	12 ㎜以下				

※1:(財)日本土壌協会:"大区画水田における先進的稲作技術導入の手引(1998)"より引用

※2:北海道農業試験場総合研究部:"北海道における水稲直播技術の到達点と今後の課題"より引用

《反転均平工法施工 1 年目 大豆収穫後》

《反転均平工法施工 2 年目 水稲収穫後》

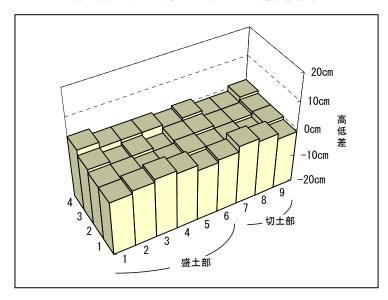


図-25 反転均平工法実施ほ場でのほ場面高低差

深川市・多度志地区に おける、施工後1年目(大 豆収穫後)の調査結果。

均平精度は施工管理基準で示される指標値(39 mm)を満足している。

ほ場内での高低差は最大で 11 cmとなり、ほ場の中央部分ではやや低く、 畦畔付近ではやや高くなった。

施工後 2 年目(水稲収穫 後)の調査結果。

1 年目は転作として大豆が作付されたため、水稲作付による湛水状態での均平精度の維持が懸念された。

しかし、代かき作業の 実施により均平精度は向 上し、収穫直後の調査で も均平精度は 20 mm、ほ 場内の高低差も 9 cmと小 さくなった。

このように、施工後2年が経過したなかでも、反転均平工法実施ほ場では十分な均平精度を維持されていた。また、湛水状態での均平精度も維持されており、当初懸念されていた盛土部での均平度の悪化はなかった。